If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-4x-124=0
a = 1; b = -4; c = -124;
Δ = b2-4ac
Δ = -42-4·1·(-124)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-16\sqrt{2}}{2*1}=\frac{4-16\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+16\sqrt{2}}{2*1}=\frac{4+16\sqrt{2}}{2} $
| 95+7x-4=20x | | 2x4=11 | | 3/2(2x+4)=x+19 | | 64=s+21 | | 105+3x+1=136 | | -8-3p=9+4p+4 | | 9^-3x=15 | | 38/x+2/5=115 | | 3(f-8)=39 | | 6x-5(3)=15 | | y+40=150 | | 8d=7=71 | | p=3=7 | | 9^x=9^(6x+10) | | -7/9k-14=7 | | -5+2z-9=10-10z | | b2–15=29b= | | p/5-6=-9 | | -9-4b=11 | | 3k÷6+9=5 | | 180=(8x-4)+(6x-12) | | 36/42=24/y | | d+0{,}5=0{,}75d+0,5=0,75d, | | -9/2a+13=-23 | | 3x+9-2x=-11 | | 180=(x-17)+(7x+5) | | 180=(x-17)+(7x-5) | | x+1(2x)=199.5 | | 180=(3x-26)+(3x-10) | | 3/4r+12=-3 | | 7x-19+18+2x=-5 | | 180=(2x-22)+(5x-8) |